常难,也非常有未来感。-E,就是一种多模态具身视觉语言模型端VLM),让机器人可以基于大模型,来理解图像、语言等数据,执行复杂的指令,而无需重新训练。 加州大学伯克利分校的LM Nav,则通过视觉模型、语言模型、视觉语言模型 CLIP等三个大模型,让机器人在不看地图的情况下按照语言指令到达目的地。Koushil Sreenath教授的工作,就是推动硬件本体、运动小脑、决策大脑三部分逐渐融合,让各种四足、双足,以及人形机器人在真实世界中灵活地运动。 另一种,是英
伟达及大量工业机器人厂商为
代表的“务实派”,主打的是“马上见效”。 “未来派”一步到位的 希腊电话号码列表 路线虽然看起来很酷,但耗时漫长,距离产业可用还比较遥远,成本昂贵,产业客户未必能够接受。在种种不确定之夏,满足工业界需求,就出现了以松耦合来实现具身智能的技术路线。 简单来说,就是不同任务通过不同模型来实现,分别让机器人学习概念并指挥行动,把所有的指令分解执行,通过大模型来完成自动化调度和协作,比如语言大模型来学习对话、视觉大模型来识别地图、多模态大模型来完成肢体驱动。 这种方式虽然底层逻辑上看还是比较机械,不像人一样有综合智能,但成本和可行性上,能让具身智能更快落地。 哪种路线更优?
坦率地说,我们认为都有其局限
性。 紧耦合的“未来派”,硬科技的含 CU 列表 量显然更高,在突破后很容易和LLM一样给产业带来颠覆式的变革,让此前的大量工作成为无用功,但问题是商业化的周期很长,谷歌此前就曾将一门心思在人形机器人的波士顿动力出售,这一轮能坚持多久还是未知数。 松耦合的“务实派”,确实能很快落地产业应用,但技术壁垒相对不高,随着AI玩家增多,存量市场逐渐被开发,毛利率必然会在同质化激烈竞争中受到挤压,商业前景会很快到达天花板。此前国內某机器人龙头企业,就因为技术含量不高而折戟科创板,这说明具身智能产业还是要笃定远一点的未来,积累硬核科技。 星辰大海与商业赚钱之间的沟壑,是每一个AI企业都要穿越的“死亡之谷”。 四、我们对机器人还有哪些期待? LLM方兴未艾,距离通用智能只是理论可行,究竟如何实现,还有很长的路要探索。从这个角度看,被大模型带火的具身智能,目前也还留在语言、视